Jumat, 13 Juni 2014

matematika fungsi komposisi dan fungsi invers dan contoh soal

Komposisi Fungsi

Jika sobat hitung menggabungkan dua fungsi secara berurutan akan menghasilkan sebuah fungsi baru. Apa yang sobat lakukan tersebut disebut dengan mengkomposisikan fungsi dan hasilnya disebut komposisi fungsi. Coba sobat hitung simak ilustrasi berikut
komposisi fungsi matematika
Pada diagram di atas fungsi f dikomposisikan dengan fungsi g menghasilkan fungsi h. h dinamakan fungsi komposisi dari fungsi f dan g dinotasikan h = f o g (sobat mungkin sering sebut fog atau f bundaran g). Jadi jika kira rinci
  • g(y) = g(f(x))
  • h(x) =  g(f(x)) atau h (x) = (g o f) (x) = g(f(x))
Buat lebih jelas kita latihan dengan contoh soal berikut
Jika f(x) = 2x2 + 1 dan g(x) = x+2
tentukan
a. (g o f ) (x)
b. (g o f ) (5)
c. (f o g) (x)
d. (f o g) (3)
Jawab:
mengkomposisikan fungsi sebenarnya sangat sederhana, sobat hanya perlu mentaati asas ketika memasukkan nilai x.
a. (g o f ) (x) —> kita masukkan fungsi f sebagai x dalam fungsi g
(g o f ) (x) = g(f(x)) = g (2x2+1) = 2x2+1 + 2 = 2x2+3
b. (g o f ) (5) = 2(5)2 + 3 = 53
c. (f o g) (x) –> kita masukkan fungsi g sebagai x dalam fungsi f
(f o g) (x) = f(g(x)) = f (x+2) = 2(x+2)2 +1 = 2 (x2+4x+4) +1 = 2x2 + 8x +8 + 1 = 2x2 + 8x + 9
d. (f o g) (3) = 2(3)2 + 8(3) + 9 = 51

Invers Fungsi

Apa itu invers fungsi? Misal sobat punya fungsi f: A → B maka invers fungsi dari f dinyatakan dengan f-1: B → A
jika y = f(x) maka x = f-1(y).
Hasil invers dari suatu fungsi dapat merupakan fungsi atau bukan fungsi. Kapan invers suatu fungsi merupakan fungsi juga? Jawabannya ketik fungsi tersebeut berkorespondensi satu-satu. Ketika suatu fungsi bukan merupkan korespondensi satu-satu maka inversnya bukan merupakan sebuah fungsi melainkan suatu relasi.
Bagaimana Menentukan Invers Suatu Fungsi?
  • Invers suatu fungsi dapat ditentukan dengan terlebih dahulu memisalkan fungsinya denga y
  • Kemudian menyatakan variabel x sebagai fungsi dari y
  • Mengganti y dalam fungsi menjadi x
Contoh
Tentukan ivers dari fungsi   f(x) = 2x + 6
Pembahasan
f(x) = 2x + 6
misal y =
2x + 6
2x = y – 6
x = ½ y – 3
dengan demikian f-1(y) =
½ y – 3 atau f-1(x) = ½ x – 3
Contoh 2
Tentukan Invers dari fungsi y = 2x + 3/ 4x + 5
jawab :
y = 2x + 3/ 4x + 5
y (4x + 5) = 2x + 3
4yx + 5y = 2x + 3
4yx – 2x = 3 – 5y
x (4y-2) = 3 – 5y
x = 3 – 5y / 4y-2
atau
x = -5y +3 / 4y – 2
jadi dengan dimikian f-1 (y) = 2x + 3/ 4x + 5 = -5y +3 / 4y – 2
atau f-1(x) = -5x +3 / 4x – 2
Penyelesaian contoh soal fungsi komposisi nomor dua bisa sobat kerjakan dengan menggunakan rumus cepat
Jika f(x) = ax + b/cx + d maka inversnya f-1(x)  = -dx + b / cx – a
.

Tidak ada komentar:

Posting Komentar